Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Atmos Pollut Res ; 13(11): 101587, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2095049

ABSTRACT

To prevent the rapid spreading of the COVID-19 pandemic, the Egyptian government had imposed partial lockdown restrictions which led emissions reduction. This served as ideal conditions for a natural experiment, for study the effect of partial lockdown on the atmospheric aerosol chemistry and the enhanced secondary inorganic aerosol production in a semi-desert climate area like Egypt. To achieve this objective, SO2, NO2, and PM2.5 and their chemical compositions were measured during the pre-COVID, COVID partial lockdown, and post-COVID periods in 2020 in a suburb of Greater Cairo, Egypt. Our results show that the SO2, NO2, PM2.5 and anthropogenic elements concentrations follow the pattern pre-COVID > post-COVID > COVID partial lockdown. SO2 and NO2 reductions were high compared with their secondary products during the COVID partial lockdown compared with pre-COVID. Although, PM2.5, anthropogenic elements, NO2, SO2, SO4 2-, NO3 -, and NH4 + decreased by 39%, 38-55%, 38%, 32.9%. 9%, 14%, and 4.3%, respectively, during the COVID partial lockdown compared with pre-COVID, with the secondary inorganic ions (SO4 2-, NO3 -, and NH4 +) being the dominant components in PM2.5 during the COVID partial lockdown. Moreover, the enhancement of NO3 - and SO4 2- formation during the COVID partial lockdown was high compared with pre-COVID. SO4 2- and NO3 - formation enhancements were significantly positive correlated with PM2.5 concentration. Chemical forms of SO4 2- and NO3 - were identified in PM2.5 based on their NH4 +/SO4 2- molar ratio and correlation between NH4 + and both NO3 - and SO4 2-. The particles during the COVID partial lockdown were more acidic than those in pre-COVID.

2.
Viruses ; 12(12)2020 12 09.
Article in English | MEDLINE | ID: covidwho-965146

ABSTRACT

Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each other creates optimal opportunities for disease transmission. The Hashemite Kingdom of Jordan and the Kingdom of Saudi Arabia are two countries that have witnessed mass gatherings due to the arrival of Syrian refugees and the annual Hajj season. The mass migration of people not only brings exotic diseases to these regions but also brings new diseases back to their own countries, e.g., the outbreak of MERS in South Korea. Many emerging pathogens originate in bats, and more than 30 bat species have been identified in these two countries. Some of those bat species are known to carry viruses that cause deadly diseases in other parts of the world, such as the rabies virus and coronaviruses. However, little is known about bats and the pathogens they carry in Jordan and Saudi Arabia. Here, the importance of enhanced surveillance of bat-borne infections in Jordan and Saudi Arabia is emphasized, promoting the awareness of bat-borne diseases among the general public and building up infrastructure and capability to fill the gaps in public health preparedness to prevent future pandemics.


Subject(s)
Chiroptera/virology , Communicable Diseases, Emerging/epidemiology , Coronavirus/isolation & purification , Public Health , Zoonoses/epidemiology , Animals , COVID-19 , Communicable Diseases, Emerging/virology , Coronavirus/classification , Coronavirus/pathogenicity , Disease Outbreaks/prevention & control , Humans , Jordan , Saudi Arabia , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL